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The relation between information and entropy for measurements of thermo- 
dynamic parameters is considered. The reduction in entropy that an obser- 
ver can obtain in a system described by a fluctuating thermodynamic 
parameter is shown to be smaller than the information possessed by the 
observer. The information transfer and the entropy production due to the 
irreversible interaction of the observed system with the measuring instrument 
are compared. 
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1. I N T R O D U C T I O N  

I t  is well known  tha t  the process  o f  measurement  is of  fundamenta l  impor -  
tance for  the in te rpre ta t ion  of  quan tum theory.  This process in t roduces  a 
noncausa l  and  i rreversible  in terac t ion  ( " r e d u c t i o n  of  the wave p a c k e t " )  
between the quan tum system S and the observer  M, when the la t ter  is con-  
sidered as a macroscopic ,  classical system (the measur ing  inst rument) .  (1) 
I t  is easily seen tha t  this in terac t ion  is direct ly  related to the in fo rmat ion  gain 
ob ta ined  by M abou t  the value of  the measured  observables  o f  S. In Ref. 2 
it  was shown tha t  for  a class of  measurements  sl ightly more  general  than the 
process  considered by von N e u m a n n  (1) the in fo rmat ion  gain and the changes 
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in the statistical entropies of S and M satisfy certain inequalities. As the 
statistical entropy is invariant under unitary (reversible) transformations, 
an information gain will imply an irreversible development for S and M. 

When one attempts to describe the interaction between S and M by 
treating M also as a quantum system, it is found necessary to consider an 
additional, external, observer M' ,  or to introduce some extra assumption 
concerning M in order to achieve the "reduction of the wave packet"  for the 
system S + M. This extra assumption can be of the type of the ergodic 
hypothesis or master equation that is commonly employed in statistical 
mechanics in order to pass from mechanics to thermodynamics. In fact, the 
reason for this assumption is essentially the same in both cases: The measure- 
ment process as well as the relaxation of macroscopic systems toward 
equilibrium both contain an irreversible element that cannot be described 
by the unitary time evolution for finite, closed, quantum systems. (3,~ It seems 
to be an interesting speculation that if the irreversible nature of the quantum 
measurement process resides in the macroscopic nature of the measuring 
instrument M, then some analogous phenomenon may exist already for 
measurements on the classical level of statistical mechanics. There does not 
seem to exist any general theory of measurements for macroscopic systems. 
The importance of the measurement process has been noted, however, in 
connection with the discussion of Maxwell's demon by Smoluchowski, 
Szilard, and Brillouin. CS-v~ (The similarity between Maxwell's demon and the 
quantum measurement process was pointed out already by von Neumann. (1~) 
The demon was created in order to introduce an apparent contradiction to 
the second law of thermodynamics: By utilizing the statistical fluctuations in 
a system in thermodynamic equilibrium, the demon obtains work out of a heat 
reservoir via a cyclic process. Szilard (5~ postulated that the gain of informa- 
tion by the demon, i.e., the establishment of a correlation between the state 
of the observed system and the memory of the demon, is accompanied by at 
least a proportional increase in thermodynamic entropy. He then shows for 
some simple systems the relation between the information content in the 
memory and the entropy decrease in the observed system that can be achieved 
(which is in its turn proportional to the available work). 

Brillouin ~6) attempted to derive the entropy increase during the process of 
gaining information from physical causes. In order to detect the fluctuations 
on a molecular level, Maxwell assumed that the demon was capable of 
"seeing" the molecules of a gas. Brillouin pointed out that in order to detect 
the molecules the demon could not use the isotropic blackbody radiation 
corresponding to the temperature of the gas. Instead he has to use a source of 
photons with a different spectrum, e.g., a black body of a higher temperature. 
The absorption of the photons by the demon, the gas, or the walls of the 
volume will then give rise to an entropy increase, which Brillouin claimed to 
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be greater than the information gain multiplied by Boltzmann's constant. 
Unfortunately, this often repeated argument is incomplete, as is explained in 
Section 8. Since it is often accepted as an indication of the consistency of 
statistical mechanics with the second law of thermodynamics, (8~ it seems 
worthwhile to try to save it. A detailed treatment is given in Section 8. There 
are several points in this type of argument that are open to doubts and dis- 
agreements(9); in fact they are gedanken-experiments with a rather meta- 
physical flavor, It seems that the metaphysical details, like demons, are 
actually superfluous and that a discussion of measurements in the realm of 
statistical mechanics can be founded on more conventional arguments. This 
claim is based on the following fact. From Einstein's theory of fluctuations in 
thermodynamic systems it follows that, insofar as the theory is applicable to 
small systems, the average size of the fluctuations, measured by the decrease 
of the Boltzmann entropy from the equilibrium value, is of the order of k 
(Boltzmann's constant) independently of the size of the system. Hence there 
is no advantage in considering the artificial example of, e.g., a one-molecule 
gas. In fact the identification of the thermodynamic quantities is more 
dubious than for a large system. Hence, if there is any sense in this type of 
discussion at all, then it should be possible to make it general and applicable 
to measurements of fluctuations in an arbitrary thermodynamic system. 

In order to connect the preceding remarks to the problem of measure- 
ment of thermodynamic quantities, we note that a fundamental feature of 
equilibrium and nonequilibrium statistical mechanics is that macroscopic 
deviations from equilibrium (e.g., during the relaxation to equilibrium after a 
change of boundary conditions) and spontaneous fluctuations in an equi- 
librium state are treated on the same footing. Thus the distribution of the 
microcanonical states in a canonical equilibrium state can be interpreted, 
for a sufficiently large system, as a distribution of macroscopic equilibrium 
states (see Section 4). (1~ Similarly, in the derivation of the fluctuation- 
dissipation theorem an essential assumption is that the average regression of 
spontaneous fluctuations is identified with the macroscopic response of the 
system when an external force is removed. (12'13~ Consequently, it is natural 
to attempt, as a first approximation, to treat the measurement of thermo- 
dynamic fluctuations as a special case of the measurement of macroscopic 
thermodynamic variables. 

In Section 2 the fundamental notions of information theory are defined, 
especially those of entropy and relative entropy. Some properties of these 
quantities for Gibbs' canonical states and for normal probability distribu- 
tions are given in Section 3. Note that the thermodynamic entropy is defined 
here (from the Gibbs' state) to be dimensionless through dividing by k. Then 
the connection between the quantity of information and the entropy reduction 
that can be achieved in S is discussed in a manner which is believed to be new 
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and which employs thermodynamic quantities throughout (Section 5). The 
measurement of intensive thermodynamic parameters is treated in Sections 
6 and 7, using linear nonequilibrium statistical mechanics, especially the 
fluctuation-dissipation theorem. Hence many measuring instruments that 
use nonlinear phenomena (e.g., for amplification) will be outside the dis- 
cussion. It should be pointed out that exactly the latter type of instruments 
are of interest in the case of quantum measurements. It is found that under 
certain restrictive conditions the entropy production in the instrument is 
greater than the information gain, but that the inequality does not hold in 
the generality one may have wished. 

2. I N F O R M A T I O N  A N D  ENTROPY 

Let a measure space (D,,)2, ~) be given. If  K and v are two probability 
measures on fl, we define the relative (or conditional) entropy as 

S(,~lv ) = f d• ln[d•/dv] 

when K is absolutely continuous relative to v (i.e., when the Radon-Nikodym 
derivative d,~/du exists) and as +oo otherwise. When K and v are absolutely 
continuous relative t o / ,  we can write 

S(KIv ) = S ( f [g )  = f dtzf(eo ) ln[f(oJ)/g(oJ)] 

where f = dK/dl~ and g = dv/dt z. This quantity has also been called " the  
information gain when the distribution g is replaced b y f  ''~1~ and " the  mean 
informatioxa for discrimination in favor of  f against g."<~s) 

To a discrete random variable X: ~)-+ R corresponds a partition {~:x} 
of ~): ~:x -~ {~o; X(oJ) = x}. Define 

Sx(~[v) = ~ K(~:x) ln[K(~:x)/v(~)] 

I f  we denote the probability distributions of X in the states K and v by 

p(x) = K(~x), q(x) = v(~x) 
we can write this as 

Sx(KIv ) = S(p]q) = ~ p ( x )  ln[p(x)/q(x)] 

If  X is a general v-measurable real-valued random variable, put 

F(x) = ~{o~; X(oJ) <~ x}, a(x)  = v{~o; X(w) <~ x} 
and define 

Sx(~lv) = | dF(x) ln[dF(x)/dG(x)] 
J 
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If  F and G are absolutely continuous relative to Lebesgue measure, then 

S~(KIv) = S(f!g) = / dxf(x) ln[f(x)/g(x)] 

where f (x)  = dF/dx and g(x) = dG/dx. 
For finite quantum systems the analogous quantity is defined as follows: 

Given two states, i.e., two positive operators of trace 1, p and p', the relative 
entropy is defined by 

S(plp' ) = Tr(p In p - p In p') 

A more careful definition when the operator in the right-hand side is not of 
trace class is given in Ref. 2. 

All the preceding definitions share the following properties: (i) S ( f  I g) >i 
0; equality holds if and only i f f  = g a.e. (ii) S( f Ig  ) is invariant under co- 
ordinate transformations (unitary transformations in the quantum case). 

The second property does not hold for the entropy of the distribution f :  

S(f )  = - f  d~(oJ) f(w) lnf(co) 

while the quantum mechanical entropy of a state 

S(0) = - T r  p ln  o 

is still unitarily invariant. 
Consider two random variables X, Y: f~-+ R on a probability space 

(f~, Z, tx). ~ defines probability distributions (or densities in the continuous 
case) p(x), q(y), and r(x, y) for X, Y, and (X, Y), respectively. Define the 
information between X and Y through (see, e.g., Ref. 16) 

I(X, Y) = ~ r(x, y) ln[r(x, y)/p(x)q(y)] 
X t Y  

= ~ p(x) ~ q(ylx) ln[q(ylx)/q(y)] 
3r 

= ~ p(x)S(qxlq) (1) 

where qx(Y) = q(ylx) = r(x, y)/p(x) are the conditional probabilities which 
define a memoryless communication channel (the channel matrix). 

Later Xwill represent a thermodynamic quantity which is to be measured 
and q(ylx) will describe the statistical fluctuations in the response of the 
measuring instrument. 

The channel capacity is defined as the maximum of I(X, Y) with 
q(ylx) fixed, p(x) variable (z~ 

C = supp~ I(X, Y) 
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A simple rear rangement  gives 

I(X, Y) = ~p(x)S(qxlq)= ~p(x)S(q~Iq')-  S(qlq') 

<<. ~ p(x)S(qxlq') (2) 

for  any probabi l i ty  distribution q'  such tha t  S(q]q') is finite. For  example,  
we must  have 

I(X, Y) <~ ~.pxS(q.lqx') 

for  all x ' .  I f  a certain value of  C is desired, then this inequality gives certain 
condit ions on the q(ylx): For  every x '  we must  have 

S(qxlqx,) >>- C 

for  at least one x. This is a condit ion of  "d is t inguishabi l i ty"  for the different 
distributions q~. 

3. PROPERTIES OF CANONICAL AND N O R M A L  
DISTRIBUTIONS 

Consider  a finite quan tum (or classical) system with Hami l ton ian  H. 
The  Gibbs  canonical  state for  the natural  temperature /3  = 1/kT is 

where 

p~ = e x p [ - f i H  - O(fi)] 

l -  co 

e*(fl) = Tr  e - f i l l  - ~  Jo dO.(x)e-fix 

f~(x) is the number  of  microstates with energy less than x. The the rmodynamic  
energy and ent ropy are defined by 

u(/3) ~ Tr  pBH = i df)(x) xe- flx-,(e) 
i 

s(fi) = S(pe) = - T r  PB In p~ = flu(p) + 0(/3) 

In t roduce  

s(/31/3') -= S(p~IpB,) = T r ( p e  In  p~ - p~ In  Pc') 

= (/3' - /3 )u ( /3 )  + e ( y )  - e ( # )  

= 5 ' [ u ( / 3 )  - u ( / 3 ' ) ]  + s ( / 3 ' )  - s ( / 3 )  

B Y ' )  
= ( 5 '  - d ~ ( 5 " )  

- f l ,  

s(fi[fi') is the total  increase in the rmodynamic  ent ropy when the system is 
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brought  into contact  with a heat bath of  natural  temperature/3 '  and allowed 
to attain equilibrium. For  an arbitrary state p we have 

s ( p [ e ~ )  = s(5) - S(p) +/3[p(,q) - . ( /3)]  

where p(H) =- Tr  pH. If  p(H) = u(/3), then 

s ( e )  ~< s(/3) 

with equality iff p = p~; hence the well-known fact that  p~ is the state of  
given average energy u(/3) with the greatest entropy. Fur thermore,  the follow- 
ing relation holds: 

S(pIpB) = S(plpa,) -F S(pa, lpa) + (fl - /3')[p(H) - u(fl')] 

F rom this it follows that if{p~} is given, A~ > O, ~ At = 1, and u(/3') = ~ 2t~p~(H), 
then 

a,[s(p,  Ie~) - s (p ,  Io r ) ]  = s (Yl /3)  (3)  
i 

Hence 

In (4) equality holds iff/3 =/3 ' ,  in (5) iff p~ = Pc" for all i. 
The  normal  probabili ty density on R ~ with mean 

a~ = (x~) 

and symmetric, positive-definite covariance matrix 

/? , j  = ((x~ - a , ) (x j  - a j ) )  

is given by 

g(x) = (27r)-~/2(det A) '/2 e x p ( - � 8 9  ~ A ~ j ( x ~ - a O ( x j - a j ) ]  

where the matrix A is the inverse of  R. A simple calculation gives (in matrix 
notat ion)  

S(g]g')  = )[ ln(det  A/det A') - n + Tr  A ' . R  + (a - a')TA'(a -- a')] 
(6)  

Let f be an arbitrary and g a normal probabili ty density in R ". Define the 
normal  densities g '  and g" through 

R(g')  = R(g), a(g')  = a ( f )  
R(g") = R(U), a(g") = a ( f )  
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Then a simple computation gives 

S ( f l g  ) = S ( f l g '  ) + S(g '{g)  = S ( f l g "  ) + S(g"[g)  
= S ( f l g " )  + S(g"lg') + S(g ' l g )  

Hence 

S(g" lg )  <~ S ( f [g ) ,  S ( f [g" )  <~ S ( f l g ' )  <<. S ( f l g )  (7) 

Furthermore, 

S( f [g" )  = S(g")  - S ( f )  >1 0 

i.e., the normal distribution has the greatest entropy of all distributions with 
given covariance matrix R. 

4. F L U C T U A T I O N S  IN T H E R M O D Y N A M I C  P A R A M E T E R S  

For simplicity we will only consider temperature fluctuations here, but 
the generalization to arbitrary intensive thermodynamic parameters is trivial. 
The canonical state of natural temperature /3 is a superposition of micro- 
canonical states of definite energy. Due to the great number of  degrees of  
freedom of a macroscopic system, however, it is possible to associate a 
temperature to an isolated system with a definite energy. For a given energy u 
the temperature/3(u) is the unique solution of 

u = -dO(/3)/d/3 

or, equivalently, as the value of/3 for which 

/3u + '~(/3) =- s(/3(u)[/3) + s(/3(u)) (S) 

has a minimum. (17.18~ We can then interpret the canonical state as a proba- 
bility density for macroscopic states indexed by/3 '(1~ 

f( /3 ' l~)  - U~(Y) 

defined by 

f(/3(x)l/3 ) d/3(x ) = exp[- /3x - 0(/3)] df2(x) (9) 

The relative entropy of two such probability densities is the same as that of 
the two corresponding canonical states 

S(fBIU~, ) = s([3[/3') 

This follows from the invariance of the relative entropy under coordinate 
transformations. Of course the entropy off~ is not equal to s(/3). From (8) 
it follows that 

f~(/3(x)) dx = e x p [ -  s(~(x)[/3) - s(fi(x))] d~(x )  



Measurements and Information for Thermodynamic Quantities 239 

Introduce the Boltzmann (or microcanonical) entropy sB(x) through 

sB(x) = s(fl) + ln[~o(x)/~o(u(fl))] 

where oJ(x) = df2(x)/dx. Note that we have chosen a definition which differs 
slightly from the conventional one by demanding that sB(u(/3)) = s(/3). For a 
sufficiently large system the canonical and microcanonical entropies should 
be approximately equal, 

s~(x) ~_ s(/3(x)) 

If  this approximation holds at least for/3(x) ~/3, then 

f~(~(x)) dx ~_ C(/3) exp[-s(/3(x)[/3)] dx 

where C(/3) is a normalization constant which does not depend on x. Hence 
the probability density for a fluctuation in temperature from/3 to/3' is 

fB(~') du(fi') "~ C(~) exp[-s(fi'[/3)] du(p') 

which is essentially Einstein's formula. For/3' - / 3  small 

s(Yl/3) ~ -~ (Y  -/3)2 a./a/3 

which gives the Gaussian approximation for the fluctuations. 
The expression (9) forf~ will be used in the following section. In Sections 

6 and 7 the Gaussian form will be used for fluctuations (of extensive variables) 
in linear systems, where this approximation is natural. 

A remark on the concept of temperature fluctuations is in order. Two 
notions of temperature are used here. The first is a parameter describing the 
canonical state, the second a random variable which is just a function of the 
energy. The advantage of the second concept over that of energy for large 
systems is that the extensive energy variable is transformed into an intensive 
one, which, when the size of the system goes to infinity, converges in some 
sense to the parameter value. There are of course other possible interpreta- 
tions of temperature fluctuations as given by, e.g., Landau and Lifshitz (19) or 
MandelbrotJ TM 

5. E N T R O P Y  R E D U C T I O N  F R O M  I N F O R M A T I O N  

We want to calculate the maximal reduction in the entropy that an 
external observer can achieve in a given thermodynamic system from a 
certain amount of information about the thermodynamic parameters. 
Equivalently, we can consider the maximal amount of work that can be 
extracted from the system in a given environment. This will be done by 
considering a simple but sufficiently general system: an infinite heat bath of 
temperature /30, a finite but large system S (1) of temperature /31, and a 



240 GSran Lindblad 

cylinder with an ideal gas enclosed by a piston (2). We assume that fil =- X 
is a random variable with a probability density f(x). The physical origin of 
this distribution can be left unspecified for the moment. Attached to (1) there 
is a measuring instrument (thermometer) M, the output of which is a random 
variable Y with a conditional probability density g(y]x) describing the 
fluctuations. 

As a result of one measurement of the temperature of (1) we obtain a 
value y of Y. From this value we want to give an estimate of the value of X 
which is optimal in some sense. If the temperature of (1) was perfectly known 
a priori, the maximal work could be obtained from it in the following way: 
The engine (2), originally in contact with the heat bath, is brought reversibly 
to the temperature fll by moving the piston, then the system (1) + (2) is 
brought back reversibly to the temperature rio in the same way. The work done 
by the system (1) + (2) is then 

A w  =/3~1s1(/311/30) 

When the information on X is incomplete, there will be losses due to the 
irreversible heat exchange which takes place between (1) and (2) if the 
estimated temperature/3 of (1) is not equal to the actual value. In fact there 
will be an entropy production 

A s '  = sl(/3d/31') + s2(/31/31') 

where/31' is the equilibrium temperature of (1) + (2). In the same way the 
system (1) + (2) cannot be brought back exactly to the temperature flo of the 
heat bath but ends up at a temperature/3o'. When (1) + (2) is brought into 
contact with the heat bath there is a further entropy increase 

As" = s1(/3o'1/3o) + s~(/3o'1/3o) 

Obviously the total available work is given by 

/3oW = AS = s1(/311/3o) - AS' - AS" 

The calculation is now much simplified if we assume that the heat capacity 
of (2) is much larger than that of (1). Then the temperature fluctuations in (2) 
can be neglected and we can make the approximations 

/31' ~ / 3 ,  /3o' - / 3 0 ,  A s  ~_ s~(/3~[~o) - s~(/3~[~) 

[the last approximate equality is actually exact when (1) has a constant heat 
capacity]. We find that/3 r implies a reduction in the available work as 
expected. Put 

f(x[ y) -= g(ylx)f(x)/g(y), g(y) -= f g(y[x)f(x) dx 
d 
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Then the average of AS given the value y of X is 

j. 
(AS)u = ASf (x ]y )  dx 

f [sz(xl/3o ) - s~(xl/3)]f(xly ) dx 

From (4) it follows that variation of/3 gives a maximum for (AS)y when 
/3 =/3v, where/3v is defined (uniquely) by 

f u~(x)f(x[y) ,Ix (10) Ul(/3y) 

This is then the optimal estimate for the value of  X when y is given. The 
maximum is, by (3), 

( As). ,m~x = s~(/3d/3o) 
= s~(N/3o) + <(&l/3) + (/30 - 5 ) M ( & )  - u~(5)] 

for all/3. Let/J  be given by 

ul(fl) = (ul(/3y)g(y) dy = f u~(x)f(x) dx 
3 J 

Then 

r 
( A S )  = Jg(y)sl(flulflo)dy = Sl(fllflo) + (s1(5.I/~)) 

I t /  

= s1(~15o) + s~(~)  - (s1(/3~)> 

If  we do not use the information contained in Y, then we can average AS 
over f (x ) :  

f A S f ( x )  dx = s~(fll/3o) - s~@l/3) 

which has a maximum for/3 =/~  which is the predicted value of X from the a 
priori distribution f (x ) ,  and the maximum is s~(~l/3o ). In the expression for 
AS above the term s1(/31/30) is then proportional to the available work with 
only the knowledge contained in the a priori distributionf(x), and (s~(/3v]/3)) 
gives a contribution due to the additional information contained in Y. 

Since (1) is a finite system, the energy (or, equivalently, the temperature 
as explained in the preceding section) exhibits fluctuations when the system 
is in thermal contact with a heat bath. If the system is isolated by the in- 
troduction of an adiabatic constraint, the value of the temperature is fixed 
and can be treated as a thermodynamic parameter. If  f (x) is now interpreted 
as the distribution of the temperature fluctuations in system (1), then the 
term (sl(fiy[/3)) is the average entropy decrease in the system obtained from 
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the fluctuations using the information contained in Y. In order to compare 
this quantity with the amount of information 

Y) = f g(y)S(f(, l y)lf( ' ))  I(X, 

we note that f(x) is derived from the canonical distribution with parameter 
/~. Due to Eq. (5) we have 

(sl(flyl~)) <~ I(X, Y) 

6. THE  M E A S U R E M E N T  OF T H E R M O D Y N A M I C  Q U A N T I T I E S  

We now consider the entropy production that is associated with the 
interaction of the measuring instrument M and the object system S. The set 
of n intensive thermodynamic parameters {X~}I ~ of S is to be measured. M is 
a thermodynamic system with {X~} acting as external forces driving the irre- 
versible processes in M and with the extensive thermodynamic variables 
{ Y~}I~ as output. It seems obvious that the relation sought between informa- 
tion and entropy should be intimately connected to the existence of fluctua- 
tions in the quantities Y. The fluctuations in Y determine the information 
about X that can be gained through one reading of the apparatus M, but they 
are also related to the response of M to external forces and to the entropy 
production through the fluctuation-dissipation theorem. It is an attractive 
conjecture that the irreversible processes due to the interaction always cause 
an entropy increase in the total system that is greater than the information 
gain. 

In order to attempt to justify this conjecture, we will consider the case 
where the fluctuation-dissipation theorem is assumed to hold. For this it is 
necessary that M can be considered to be linear, i.e., the variations in the 
external forces are small enough to give a well-defined admittance function, 
and that S is much larger than M, so that the interaction of S and M does not 
influence the value of the parameters X appreciably. Furthermore, we assume 
that the parameters X are the generalized thermodynamic forces conjugate 
to the variables Y and that the random variables describing the fluctuations in 
Y are normal. (12,1a~ 

Let the response of the system M to an external force X(t) be given by 

Y(t) = (Y(t))  + "q(t) 

The relation between (Y(t))  and X(t) is linear and causal, i.e., of the form 
(in matrix notation) 

;0 <Y(t)) = K ( T ) X ( t -  ~)dT 
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Due to causality the admittance matrix 

R(~o) = K( t ) e  ~ at 

satisfies the Kramers -Kronig  dispersion relations if I~(0) is finite. ~q(t) is a 
stationary normal random process (the thermal noise associated with Y) 
with an autocorrelation matrix 

and spectral density 

R~j(r) =- (~7~(t)vj.(t + ~-)} 

~ oo 

R(w) =- R(t)e ~t dt 
oo 

Hence Y(t) has the probability density 

f (y)  = (2~-)-"/2(det R) -1/2 e x p { - � 8 9  (Y(t)}]rR-Z[y - (u 

where R - R(0) and T denotes the transposed matrix. 
From the assumption that X and Y are conjugate variables and the equi- 

partition property it follows that 

K(0) = r (1 l) 

The fluctuation-dissipation theorem can be formulated in the following 
equivalent ways: 

~o&(,o) = K ( - , o )  - R(,~)T 

fi(d/dt)R(t) = g ( - t )  - K(t) T 

I f  X(~o) is the Fourier transform of X(t), the total entropy production is given 
by 

As = (4~) - 1/~ J" o~x(~oF~(o~)5:(~) a,o (12) 

Let the state of  S be characterized by the value x of the variable X, while the 
apparatus M is in equilibrium, with no external forces. At t = 0 the systems 
are brought into contact, which corresponds to 

X(t) = 0 for t < 0, X(t)  = x for t ~> 0 

Then the steady-state response of M is 

( Y ( ~ ) )  = K(O)x 

For the moment  we will assume that K(O) is finite. The entropy produced is 

AS = (47r)- ~/32x T (~(~o) &o x = �89 
2 
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Suppose that some external observer measures the value of u  at a suffi- 
ciently large time to obtain the steady-state response. The problem is then to 
distinguish the conditional probability densities 

gx(Y) --- (270 -"f2(det R) - 112 exp{ - �89 - R(0)x]TR-1 [y _ K(0)x]} 

corresponding to different values of x. The relative entropy of two such 
distributions is given by (6): 

S(g,,Ig,,, ) = �89 - x')TR(x -- x') 

where we have used (11) and the fact that  R is a symmetric matrix. Hence 
we find that  

AS = S(gx[go) 

Let X be a random variable with probability densi tyf(x)  (note that the time 
dependence of X(t) is deterministic and given above). The information about 
X given by Y(oo) is 

I(X, Y(~))  = ff(x)g(g,,lh) dx 

where h(y) = ff(x)g,,(y)dx. For a given distribution f (x )  we are free to 
choose the initial (equilibrium) state of M by moving the zero of the x scale 
to some value ~, in order to minimize the average entropy production: 

= f f ( x )S (gx l  gT,) ( A s )  dx 

From (2) it follows that 

I(X, Y(~))  = ( A S )  - S(h[g,,) 

Hence 

I(X, Y(~))  ~< ( A S )  

The minimum of ( A S )  is achieved when S(hfg~ ) has a minimum. According 
to (7) this is obtained when 

y=-_ f yg-(y)dy= f yh(y)dy= I ( ( 0 ) f  x f (x )dx  

i.e., when 
/, 

= I x/(x) dx 

Now assume X to be normal with mean a and covariance matrix Q. Then 
~, =- a and 

( A S )  = (S(g,,[g~,)) = �89 2 Tr QR 
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In this case one can actually compute the information. We find that h(y) is 
normal with mean I~(0)a and covariance matrix 

R '  -- R + I~(0)QI~(0) = R(1 + fl2QR) 

Hence from (6) 

S(g,,[h) = ~ln(det  R'/det R) - Tr[I~(0)QK(0)R '-1] 
+ xTR(0)R'- lg(0)x} 

I(X, Y(ov)) = (S(g ,  dh)) = �89 ln(det R'/det R) 
= �89 In det(1 +/~2QR) (13) 

At this point we can easily calculate the reduction in the entropy of S dis- 
cussed in Section 5 if we assume that the distribution for X has its origin in 
the thermal fluctuations in S, i.e., if the normal distribution f (x )  is given by 
Einstein's fluctuation formula. This means that the entropy of S as a function 
of  x is approximately 

SI(x) --- - �89  - a)TQ-l(x  - a) 

for some covariance matrix Q. Bayes' formula gives the conditional proba- 
bility density for X given Y = y as the normal distribution with covariance 
matrix 

and mean 

Q, = [Q- I  + K(0)R- 1~:(0)]-1 

xy --- a + Q'I~(0)R-I[y - I~(0)a] 

A calculation similar to that of Section 5, but using the normal distribution 
instead of the canonical one, gives that the predicted value of X, given Y = y, 
is xy and that the average reduction achieved in the entropy of S is 

$1(~) - (Sl(xy)) = 0 + �89 - a)TQ-l(xy - a )dy  

= �89 2 Tr R(1 + ~2RQ)Q'Q-1Q'  (14) 

Since the covariance of the intensive parameter X is inversely proportional 
to the size of  S, and the covariance of the extensive quantity Y [and hence 
K(0)] is proportional to the size of M, the condition that S is much larger 
than M means that 

f12 R << Q-1 

Inserted in (13) and (14), this givcs that the information and the entropy 
reduction to first order of f/2QR arc equal to �89 2 Tr QR, which is equal to 
the cntropy production. 
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For  many interesting measuring systems the assumption behind the 
preceding discussion that the interacting systems reach an equilibrium state 
is not fulfilled, i.e., R is infinite. In this case we can only let S and M interact 
during a finite time r. In order to carry out the derivations below it can be 
assumed, however, that R is large but finite. Let X have the value x, put 

Then 

where 

X(t) = x for t e (O, r ) ,  X(t) = 0 elsewhere 
Z(t) = Y(t) - Y(O) = (Y(t) - Y(O)> + vl(t) - ~(0) 

(Z( t ) )  = fiQ(t)Tx 

Q(t) = R - R(t) 

The covariance matrix of  Z(t) is 

Rz(t~ = Q(t) + Q(t) T 

Let the value of Y be measured at t = 0 and t = ~-, and put Q(~) = Q and 
Z(~-) = Z. Let the normal distribution for Z, given that the external force 
has the value x, be denoted by gx. 

The relative entropy of two such distributions is given by 

S(gx[go) = �89 + Q~)-IQTx 

The entropy produced in the total system is 

AS = �89 + QT)x 

I f  we assume that the relevant variables are even under time reversal, that 
time reversal symmetry holds, and that there is no external magnetic field, 
then(la) 

R(~-) T = R ( z )  

Hence Q is symmetric and positive definite and 

S(gx[go) = �88 = �88 AS 

For  this special case, again using Eq. (2), one obtains the desired result: The 
entropy production is greater than the information gain. 

As a simple example of a measuring instrument where the preceding 
inequalities fail to hold, we mention a fluxmeter, i.e., a galvanometer with 
torsion constant zero. In this case R is not finite, but a direct calculation of 
the matrix Q is simple. Let R' be the circuit resistance, K the mechanical 
damping, and G the flux linkage of the coil. I f  we neglect the inductance and 
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the moment  of  inertia of  the coil we get for t e (0, ~-) 

R'Pl + GP2 = xl 

- G 2 1  + K22 = 0 

where Yl is the electric charge, Y2 the galvanometer deflection, and xl the 
potential difference to be measured. For  z large enough compared to the 
time constants defined by the inductance and moment  of  inertia we obtain 

Q = fl-I'r(KR' + G2)-~( 5 G GR, ) 

AS = flK(KR' + G2)-lx12"c 
( (Az~)~5 = 2 /3 -~R ' (KR '  + G~)- l~  - 

Assume that we measure only Z2, i.e., the increase in the galvanometer 
deflection during the time T. The relative entropy of the distributions for Z2 
corresponding to the external force x and zero is 

S2(gxlgo) = flG2x%'/4R'(KR' + G 2) = G2 AS/4KR' 

For  G 2 > 4KR' we can then obtain a counterexample to the general conjec- 
ture by a suitable choice of the probability distribution for X. 

Note that the variables Y perform a free Brownian motion without a 
natural zero point; hence the measurement of Y2 at t = 0 is necessary. This 
also means that there is no energy associated with these coordinates. Hence 
a measurement of Y cannot, in turn, be considered to be a measurement of  a 
macroscopic quantity. 

7. I N F O R M A T I O N  RATE U N D E R  REPEATED M E A S U R E M E N T S  

The definition of the information about  the value of X obtained via a 
measurement of  Y as used in the preceding section applies to essentially a 
single " read ing"  of Y. The amount  of  information can be increased through 
a repeated observation of Y, which has the effect of  averaging out the 
fluctuations. 

Assume as before that I~(0) is finite and let 

Yx(t) = /~(0)x + ~(t) 

be the steady-state response of M if the force X(t) has the constant value x. 
For simplicity we restrict ourselves to scalar X and Y. I f  Y~ denotes the set 
of  normal random variables { Y(t), t e (0, T)}, define 

S(Yx~I Iio0 = lira S(g~n)lg~o'~ ) (15) 

where g ~  is the probability density of the set of random variables Y(i~-/n), 
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i = 0, 1,..., n - 1. This is the relative entropy obtained by an infinite number 
of observations of Y during the time interval (0, ~-). From (6) it follows that 

where 

The identity 

.-1 )I~( S(g(fflg~o "~) = ( ~ A,j 0)2x2/2 
\ i , j = O  / 

(A- 1),j = R[(i - j)~'/n] =- (v(ir/n)~l(j-c/n)) 

A i j R [ ( j -  k)T/n] = n 
i j k  

gives, if r is much larger than the relaxation time of the process r/(t), 

Hence 

A~ s ~ R(kz/n) ~ n 
~i k =  - oo 

.-i /f_o /k( 
lim ~ Afj = r R(t) dt = ~- O) 

n--*oo L i = O  

lira ~--1S( Yx*[ Yo ~) -/((0)2x2/2/~(0) 

This quantity can be calculated in an alternative way. Introduce a weight 
function ~o through 

~(t) = ~_-1 for t e(0,~-), ~o(t) = 0 elsewhere 

If r is much larger than the relaxation time of the system, then 

( Y:,(q~)) - ( f Yx(t)cp(t) d t >  .~ I((O)x 

(V2(cp)) = (27r)-1 i"/~(~o) sin2(T~o/2)(rw/2) -~ d,o 

~-~(0) 
The relative entropy of the distributions for Yx(~o) and Yo(~O) is approxi- 
mately 

g(O)~x~-/2k(O) 

Hence we obtain the same result as before. By averaging over a sufficiently 
long time we can thus increase the relative entropy, while the total increase 
in thermodynamic entropy remains constant (once equilibrium has been 
reached). Hence the conjectured inequality need no longer hold for every 
probability distribution for X. In order to carry out the averaging, however, 
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we must use a second apparatus M '  which performs an integration of the 
variable Y. Alternatively, one can use a number of external observer systems 
to record the value of  Y at a sufficiently large number of points (one system 
for each point). Consequently, the entropy production in the integration 
system or in the memory systems must be considered, which of course means 
a return to the problem discussed in Section 6. 

A related problem concerns the information rate and entropy production 
in a stationary Gaussian information channel. Let 

Y(t) = (K( t  - "r)X(-r) d'r + ~(t) 
f 

where X(t) and ~7(t) are independent normal random processes. The informa- 
tion rate is defined by <2~ 

i(X, Y) = lim r-I I (XL YO 

where I(XL YO is defined in analogy with (15). Let the spectral densities of 
X(t) and rl(t ) be kx(OJ) and k,(w) and let/~(o~) be related to kn(w) by the 
fluctuation-dissipation theorem. Then (2~ 

Y) = (4~-) -1 f ln [1  i(X, + 

On the other hand, the production of thermodynamic entropy per unit time 
in the system is given by 

- 1~ f ~O~kx(O~)k,(o~) d,o dS/dt (4~) 

which follows from (12). In general we do not have 

i(X, Y) <~ dS/dt 

This inequality is, however, true for a system where/~(~o) is purely imaginary. 
It follows from the fluctuation-dissipation theorem that in this case 

[/~(w)[ 2 =/32~o2k,(~o)2/4 

and hence that 

i(x, Y) <~ �88 dS/dt 

There have been several attempts to make the information entropy relation 
plausible by using the Shannon-Hartley formula for the capacity of an 
information channel with Gaussian noise (see, e.g., Bell ~21~ or Pierce~2~). The 
crucial assumption is that the total signal energy is dissipated. From the 
discussion above it follows that these arguments are inconclusive, and that it 
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is in fact possible to design systems such that the entropy production is 
smaller than the information transfer. 

8. M A X W E L L ' S  D E M O N  R E E X O R C I S E D  

We will first give a short summary of the discussion of Szilard and 
Gabor's heat engine as given by Brillouinr + 

A closed cylinder of volume V contains one gas molecule and is in 
contact with a heat reservoir of temperature To. The volume can be divided 
into two equal parts by a piston. An observer (Maxwell's demon) determines 
in which part the molecule happens to be and moves the piston reversibly 
toward the empty part. If the molecule is in thermal equilibrium with the 
walls of temperature To, this process yields a quantity of work 

W =  kTo in 2 

A formal application of the formula for the entropy of an ideal gas gives an 
entropy decrease 

AS = - l n  2 

when the piston is inserted or when the position of the molecule is determined 
(the latter interpretation is more in line with the point of view taken here). 
This "gedanken-experiment" seems to defy the second law of thermo- 
dynamics. The essential question is, according to Brillouin: Is it actually 
possible for the demon to see the individual atoms ? In the isotropic black- 
body radiation of the cylinder this is of course not so. But the observer can 
use a torch, i.e., a radiating black body of a temperature T > To, and a 
photocell to detect the photons. In Ref. 6 it is argued that the torch emits 
photons of median energy 

hu = k T  In 2 

that the entropy increase in the gas and the photocell when one photon is 
absorbed is 

AS '  = flohv = (In 2)T/To 

and that in order to distinguish the photons from the background radiation 
of temperature To it is necessary to take T > To. The information I obtained 
when determining in which half-volume the molecule is located is In 2, i.e., 

A S ' > I  

The entropy decrease achieved through the measurement is AS = - I n  2, 
hence AS + AS '  >1 0 and the second law is not violated after all. 
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The preceding argument is incomplete, as can be seen from the following 
remarks. 

1. In the limit T - +  To it is evident that no information can be obtained, 
i.e., I --- 0 in this case. Hence T > To is not a sufficient condition. 

2. The gas and the observer do not make up an isolated system. I f  the 
torch is included, we obtain 

A S '  = (rio - / 3 ) h v  = (In 2 ) ( T -  To)/To 

3. There is a nonzero probability that a photon is emitted by the gas 
and absorbed by the torch. This leads to a decrease in entropy. In the limit 
T = To there can be no entropy production, of course. 

We easily realize that the essential point in the measurement process 
described above is the problem of how to distinguish between blackbody 
radiations of different temperatures. This of  course leads us back to the 
measurement of  temperature for macroscopic bodies. The problem can be 
formulated in the following way. An ideal black body of natural temperature 
/3 radiates in an enclosure of  temperature /30. Provided that an a priori 
distribution is given for/3, what is the information about/3 contained in the 
measurement of  the number of  photons radiated in unit time, and how does 
it compare to the entropy increase due to the radiative transfer of energy ? 

The problem of how the detection of the photons actually takes place 
will be neglected, but it can be safely assumed that any real detection process 
gives an extra entropy increase, which is, however, in general difficult to 
calculate. In order to simplify the notation, we can consider one small fre- 
quency interval only (this can be realized by putting a filter between the black 
body and the rest of the system). When a black body is in equilibrium with its 
surroundings at temperate T the average rate of  absorption or emission of 
photons in the interval (v, v + dr) per unit area will be (Planck's law) 

(N> = 27rc-2(e zhv -- 1)-% 2 dv 

The mean square fluctuation in the number of photons emitted or absorbed 
per unit time and area is 

<(AN)2> = (N>[1 + (e B~ - 1) -1 ] 

This expresses the fact that the photons, due to their boson nature, do not 
behave as a stream of independent particles (in which case this quantity 
would be ~N). But we can regard the radiation as consisting of a number 
No = 27rc-% 2 dv of normal modes, each of which has mean (n)  and variance 
(n)(1 + (n)),  where (n)  = (e e~ - i) -~. The number of photons in a mode 
is geometrically distributed 

p(n) = (n~n(n + l ~ - n - 1  
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The relative entropy for two such distributions is 

S(p~lp2) -= (n ) l  In[(n)d(n)2] + ((n) l  + 1)ln[(n + 1)2/(n + 1)~] 

and we find 

Hence 

S(pl[P2) + S(p2[PO = (f12 - 131)(@)1 - (n)2)hv 

S(pllP2) ~ ([32 - / 3 z ) ( (n ) l  - (n)2)hv 

When considering the nonequilibrium situation at hand, we must assume 
that the distribution of the emitted photons from a black body is independent 
of the temperature of  the other bodies present, and that the distribution of  
the absorbed photons is independent of the temperature of the body itself. 
Then the right-hand side of the inequality above is the entropy increase per 
unit time due to one mode of the radiative energy transfer between two black 
bodies of temperature/31 and/32, respectively. 

When the contributions of the No modes are added as independent 
random variables the relative entropy is easily seen to be additive and so, 
of course, is the entropy production. If the random variables have a statistical 
dependence, the relative entropy is subadditive, while the entropy production 
is still additive, and hence the inequality is still valid. 

Let the random variable X be the temperature of the body and Y the 
number of photons in the frequency range (v, v + dr) radiated, during a unit 
time interval, from the body to the surroundings of temperature 13 o. Then 

I (X ,  Y) = f f([J)S(p~lp ) dl3 and p(n) - f f(~)pe(n) 

From (2) it follows that 

I (X,  Y) <. f f(t~)S(pe[p,o) d~ 

= ((rio - f i)((N)e - (N)Bo))hv 

where the right-hand side is the entropy production due to the radiation 
transfer. 

9. D I S C U S S I O N  

The relation between the entropy reduction achieved in the system S and 
the information content in the apparatus M discussed in Section 5 seems to be 
satisfactory as far as the interpretation of the temperature (or any intensive 
parameter) for an isolated system can be accepted. The choice of a tempera- 
ture for an isolated system is not unique. ~11'18,s3~ The formula for the optimal 
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estimate (10), which reduces to the function /3@) when the energy of S is 
known, shows that the definition used here is self-consistent. It also gives an 
interpretation of the temperature estimate that seems more physical than the 
"max imum likelihood" prescriptionaZ~: The temperature estimate is chosen 
to maximize the available work. It has been claimed, in contradiction to the 
conclusion above, that there is no relation between the measure of informa- 
tion and the entropy, and that the observer need not have any information in 
order to obtain work from the system. It seems that the weak point of  the 
argument presented in Ref. 9 lies in the lack of a concept of work as opposed 
to random fluctuations of the energy. In order to obtain work from the 
system it is by definition necessary to apply an external force of  a macroscopic 
nature to the system. The resulting change in the conjugate coordinate is 
composed of a deterministic part (the mean value over the relevant ensemble) 
and of random fluctuations. The work is then defined as the average energy 
transfer over a large number of  trials and hence the fluctuations are averaged 
out. In Section 5 it is understood that such an averaging has been made and 
hence that the fluctuations in all systems except the object system S can be 
neglected. 

It may be of some interest to compare the results of Section 5 with those 
of Szilard. (2~ Szilard calculates the work that can be obtained from an 
ensemble in a noncanonical state when it is assumed that this ensemble can 
be transformed into a canonical one by some special types of  thermodynamic 
processes. The result can be expressed as the entropy of the given state rela- 
tive to the canonical state of the same mean energy, which resembles the 
formulas of  Section 5. 

As has already been pointed out, the measurement of  thermal fluctua- 
tions, once an adiabatic constraint has been introduced, is treated here as a 
special case of the measurement of  macroscopic parameters. This method 
leads to some problems of interpretation. Let the total system S + M 
obtain equilibrium and let M be much smaller than S. I f  the probability 
distribution for the parameters of S is due to the thermal fluctuations, then 
we saw in Section 6 that the entropy reduction achieved in S, the information 
gain, and the entropy production in M are approximately equal. This means 
that when the information gain is used to reduce the entropy of S the system 
S + M seems to be approximately reversible. Now the following objection 
may be raised. Let S and M be treated on the same footing as finite systems 
and let them be in equilibrium with a heat bath. It then follows from the 
properties of  the canonical state that the energies of S and M after being 
separated from the heat bath and brought into contact with each other are 
independent random variables. (~4~ Hence no information is contained in one 
of the variables about the other. Furthermore, no thermodynamic entropy is 
produced when the systems are brought into contact. This seems to contradict 
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the assumption stated above. The resolution of the apparent paradox is as 
follows. If  we let S and M be in thermal contact and if we repeatedly measure 
the energy of M via an external apparatus M '  (which leaves the energy of M 
invariant, e.g., an ideal quantum measurement), then the information per 
measurement about the energy of the system S is approximately the same as 
that calculated by the formalism of Section 6. The entropy production, on 
the other hand, is calculated from the mean value of the energy of M, which 
will depend on the energy of S, and is generally different from zero. 

The relation between information and entropy production in the instru- 
ment M treated in Sections 6 and 7 turned out to be less general than one 
could wish. In order to obtain the desired inequality, some further restrictions 
must be imposed on M or on the measurement procedure. One possibility is 
to prescribe that the system S + M should be allowed to attain equilibrium. 
The fact that counterexamples to the general inequality exist does not seem 
to have been pointed out before. The interpretation of this fact is not clear 
and the first question is, of course, Could this be used to circumvent the second 
law of thermodynamics ? In order to give a negative answer, we should prove 
that the information in the general case cannot be used by a macroscopic 
observer in order to manipulate the boundary conditions without further 
entropy increase. This is evidently true for the case of a fluxmeter discussed 
in Section 6, where the pointer performs a free Brownian motion. An external 
observer can use this information, e.g., through an observation via photons, 
which brings us back to the type of problems discussed in Section 8. 
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